Estimation of Mixed Venous CO₂ Tension and QRS Electrical Axis From Simple Mathematical Considerations

Katsuo UCHIDA, Ph.D.

Abstract: Simple mathematical formulations are introduced to obtain mixed venous carbon dioxide tension (P_{VCO_2}) and mean electrical axis of the ventricles (θ). A linear decrease in O_2 and an exponential increase in CO_2 concentrations of alveolar gas during rebreathing are shown to be essential for the estimation of P_{VCO_2}. The QRS electrical axis was usually obtained from a graphical analysis using Einthoven's triangle with peak height differences between the R and S waves. The θ value is calculated from a simple trigonometric function instead of the graphical analysis. These examples indicate that elementary mathematics is useful in physiology to make clear physiological meaning behind observed phenomena.

Key words: elementary mathematics, mixed venous CO₂ tension, QRS electrical axis

Introduction

For the evaluation of cardiac output with direct Fick's method, mixed venous CO₂ tension (P_{VCO_2}) is necessary together with arterial CO₂ tension (P_{ACO_2}). P_{ACO_2} can be measured directly by taking arterial blood. Alveolar P_{CO_2} (P_{ACO_2}) is also a good approximation of P_{ACO_2}. However, P_{VCO_2} cannot be measured easily because of the sampling difficulty of mixed venous blood. Indirect estimation of P_{VCO_2} has been studied by a rebreathing method (Defaures, 1958; Mochizuki et al., 1984; Uchida et al., 1986; Vanhees et al., 2000). A rebreathing system is generally composed of the lung and a bag containing the air. Neglecting a dead space compared with a tidal volume, we can approximate P_{CO_2} in the bag during rebreathing as P_{ACO_2}. Since the rebreathing system is a closed system, CO₂ is accumulated and P_{ACO_2} rises. With the progress of the P_{ACO_2} increase, diffusion of CO₂ from the mixed venous blood to alveoli is reduced, and finally the diffusion is stopped when $P_{\text{VCO}_2} = P_{\text{ACO}_2}$. Therefore, we can get an information on the blood (P_{VCO_2}) from that on the gas (P_{ACO_2}) without taking the blood. In this report fundamental relations necessary to estimate P_{VCO_2} from the O_2 and CO₂ concentrations during rebreathing are shown.

The standard mean electrical axis of the ventricles (θ) is 59 degrees, which is changed markedly in certain pathological conditions (Guyton, 1976). The θ value was usually determined from a graphical analysis of the standard leads electrocardiogram (ECG) using Einthoven's triangle. Projections of differences in peak heights between the R and S waves on the axes of leads I and III schematically give the θ value. Instead of the graphical analysis, θ is here shown to be obtained from an elementary mathematical consideration.

Estimation of P_{CO_2} of the mixed venous blood

P_{ACO_2} rises exponentially during rebreathing (Defaures, 1958), while alveolar P_{O_2} (P_{AO_2}) is decreased linearly (Mochizuki et al., 1984; Uchida

Department of Physical Therapy, Yamagata Prefectural University of Health Science, Yamagata 990-2212, Japan
et al., 1986). Such a contrast in O\textsubscript{2} and CO\textsubscript{2} concentrations during rebreathing is due to the differences in pressure gradient between the alveolar gas and the mixed venous blood. The pressure gradient of CO\textsubscript{2} is about one tenth of that of O\textsubscript{2}, and the equilibration between \(P_{\text{A}CO_2} \) and \(P\tilde{V}CO_2 \) is attained within a contact time of the mixed venous blood with the alveolar gas. According to these observations, time dependence of the O\textsubscript{2} and CO\textsubscript{2} concentrations during rebreathing can be written as

\[F(t) = a - bt \]

\[G(t) = G_0 - (G_0 - G_b) \exp(-kt) \]

where \(F(t) \) and \(G(t) \) are time dependent concentrations of O\textsubscript{2} and CO\textsubscript{2} in a rebreathing gas, and \(a, b \) and \(k \) are positive constants (Fig.1). \(G_b \) and \(G_0 \) are CO\textsubscript{2} concentrations at the start and the end of rebreathing, respectively. Time dependent alveolar O\textsubscript{2} and CO\textsubscript{2} pressures are given by

\[P_{\text{A}O_2}(t) = (P_b - 47) F(t) \]

\[P_{\text{A}CO_2}(t) = (P_b - 47) G(t) \]

where \(P_b \) is a barometric pressure and 47 Torr is saturated water vapor pressure at 37 °C. At the start of rebreathing \((t = 0) \), \(P_{\text{A}O_2}(0) \) and \(P_{\text{A}CO_2}(0) \) are calculated from the initial alveolar O\textsubscript{2} and CO\textsubscript{2} concentrations \((F_0 \) and \(G_0) \). At the end of the rebreathing \((t \rightarrow \infty) \), the limiting \(P_{\text{A}CO_2}(t) \), which is equal to \(G_0 \) corresponds to \(P\tilde{V}CO_2 \) because of the equilibration of CO\textsubscript{2} tension between the alveolar gas and the mixed venous blood.

Neglecting the lung volume change during rebreathing, we have \(\dot{V}_0 \) and \(\dot{V}CO_2 \) as follows:

\[\dot{V}_0 = -V(dF(t)/dt) = Vb \]

\[\dot{V}CO_2 = V(dG(t)/dt) =Vk(G_0 - G_b) \exp(-kt) \]

Equation (5) shows that \(\dot{V}_0 \) remains constant even in rebreathing, and Eq. (6) shows that \(\dot{V}CO_2 \) is decreased exponentially with the time. From Eqs. (5) and (6), respiratory quotient \((RQ) \) is given by

\[RQ = (k/b) (G_0 - G_b) \exp(-kt) \]

which is rewritten with Eq. (2) as

\[RQ = (k/b) \{G_0 - G(t)\} \]

Substituting \(G(t) \) in Eq. (4) for that in Eq. (8), we have

\[RQ = -(k/b) P_{\text{A}CO_2}(t)/(P_b - 47) + (k/b)G_0 \]

Decreasing \(\dot{V}CO_2 \) and constant \(\dot{V}_0 \) during rebreathing give rise to a linear reduction of \(RQ \) against the \(P_{\text{A}CO_2}(t) \) increase (Eq. (9)). The limiting value \(G_0 \) is equal to the \(G(t) \) value when \(RQ = 0 \), reflecting the fact that at this stage no CO\textsubscript{2} output occurs because of the disappearance of pressure gradient between alveoli and mixed venous blood. Therefore,

\[P\tilde{V}CO_2 = (P_b - 47) G_0 = (P_b - 47) G(t)_{RQ=0} \]

Mochizuki et al. (1984) developed a method to obtain \(P\tilde{V}CO_2 \) from a linear relation between \(P_{\text{A}CO_2} \) and \(RQ \) during rebreathing. The above discussion shows that their method is based on the fundamental two relations given by Eqs. (1) and (2).

Estimation of the QRS electrical axis

The QRS electrical axis (\(\theta \)) of ECG was usually obtained using the differences in peak heights between R and S waves for the leads I and III (Fig.2). In this figure, O is the middle point of Einthoven's triangle, and A is an intersection point with the projections of leads I and III. Segments OB and AC correspond to the peak height differences between the R and S waves for the leads I and III, and are represented here I and III, respectively. The \(\theta \) value is obtained by measuring the angle \(\angle BOA \). It should be noted that \(\angle BOC = \angle BAC = 30^\circ \), and therefore \(\angle OAC = \angle OAB + \angle BAC = (90^\circ - \theta) + 30^\circ = 120^\circ - \theta \). Referring to the two triangles \(\Delta OAB \) and \(\Delta OAC \) in this figure, we have

\[OA \cos \theta = OB = I \]

\[OA \cos(120^\circ - \theta) = AC = III \].

Fig. 2 Relation between the QRS electrical axis and peak heights of the standard leads ECG

From Eqs. (11) and (12)

\[-\frac{1}{2} \cdot \cos \theta + \frac{\sqrt{3}}{2} \cdot \sin \theta \] / \cos \theta = \frac{\text{III}}{\text{I}} (13)

Therefore,

\[\tan \theta = 2/\sqrt{3} \left(\frac{\text{III}}{\text{I}} + 1/2 \right) \] (14)

The QRS electrical axis \(\theta\) can be calculated as follows without drawing a diagram like Fig. 2:

\[\theta = \tan^{-1} \left(\frac{2}{\sqrt{3}} \left(\frac{\text{III}}{\text{I}} + 1/2 \right) \right) \] (15)

References

Defaure, J. G. : Determination of \(P_{\text{vco}}\) from the exponential \(\text{CO}_2\) rise during rebreathing. *Journal of Applied Physiology* 13, 159-164, 1958

Received: October 30, 2000.

Accepted: February 5, 2001.